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PROGRESS REPORT

RESEARCH GRANT NAG-l-1424

ODU RESEARCH FOUNDATION GRANT NUMBER 126611

THEORETICAL STUDIES OF A MOLECULAR BEAM GENERATOR

MOLECULAR BEAM GENERATOR MODEL

The following is a proposed baseline model that is being develope for the simulation of

hydrodynamic generator, which can be converted at a later date to a magnetohydrodynamic

MHD thruster by adding the necessary electric and magnetic fields. The following development

will include the electric and magnetic terms, however, the initial computer program will not

include these terms. The analysis that follows is for a one species, single temperature model

constructed over the domain D defined by the region enclosed by ABCDEF illustrated in the

figure 1.

Figure 1. Geometry of thruster MHD model.

CONTINUITY EQUATION

The continuity equation expresses conservation of mass and is given by

cOp
o-7+ v .(pff) = o (1)
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where p = p(r, O, z, t) is the density of the gas, and I_ = Vr _r + VO _o + Vz _z is the velocity. In

cylindrical coordinates the equation (1) has the form

Op io(,-pV,)iO(pvo) O(pv )-=+ + + -o. (2)
r Or r (9t9 OzOt

CONSERVATION OF MOMENTUM

The equation for conservation of linear momentum is given by

n
p---_ + p(V. V)V = ___ ffi (3)

i=1

where _n=l ffi represents a summation of body forces per unit volume acting upon a control

volume within the domain D. We consider initially the pressure force

F1 = -VP (4)

where pressure and density are related by the equation of state gas law P = p*RT, Where p* is

the density in mole/m 3. i.e. p*W = p where W is the molecular weight in kg/mole. The force

due to viscosity is

if2 = rl { v2_ + V(V. ¢)} - _V(71V. I7)+ 2(Vr/- V)V + Vr/× (V × V) (5)

where

r1=1"2510-19 5 ( Mm-k_ BT)8niA

is the plasma viscosity, with

A = 2(log(1 + a 2)

1/2 (2kB_ T)2=C1T 5/2

o_2

I+o12 )

(6)

a constant which depends upon the ionization factor a, (a = 1 for a fully ionized gas). The

additional constants are M the ion mass (Kg), m the electron mass, e the electron charge, k B

Boltzmann's constant, T is the absolute temperature, and ni = 1 for a singly ionized plasma.

For oL = 0, we employ an empirical curve fit for the viscosity as a function of temperature. The

magnetic force is given by

g3 =fxB (7)

2
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where f is the current density. The gravitational force is given by

if4 = P_'.

The electric force is given by

All additional forces are represented by

and are neglected for the present.

12

i'6

CONSERVATION OF ENERGY

Representing the internal energy by u = CpT where Cp is the specific heat at constant pressure

and T is the absolute temperature, the energy equation can be written in the form of an energy

b alatlce a_s

where both

temperature T.

relation

O(CpT) "
P 0t + p(f" V)(CpT) = V(KTVT) + _ ¢i (8)

i=1

the specific heat Cp and thermal conductivity KT are treated as functions of

The thermal conductivity K T of the medium is given by the Spitzer-Harris

4.4 10 -l° T 5/2
KT = (9)

23-1og[ l'22103nl/2]Ta/2

and n is the plasma number density in particles/m 3. In addition to the heat loss term the right

hand side of equation (8) contains the terms

¢1 =(_+ f x B). Y-0f" (I0)

which represents joule heating,

+ + \-o-7 + 0r )

Iov 
+ A\-6V + -7 + -_z ]

-87/]

(0v0 v0)+ k, Or r 2} (11)
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which represents viscous dissipation. Here r/and A are viscosity coefficients satisfying A + _q = 0.

In addition there is the radiation loss term. Various forms of the radiation term exists in the

literature. As a first approximatrion we take the radiation loss term from reference 11 which can

be expressed
,4

¢3 = wR v(_T 4)

where )_R is the Rosseland mean free path (,k R = 1/a R where _R is the Rosseland absorption

coefficient (cm-1)), and a is the Stephan Boltzman constant. The remaining terms )--_n=4 ¢i

represents additional energy considerations which are initially neglected.

MAXWELL'S EQUATIONS

Maxwell's equations in the MKS Rational system of units can be expressed

Gauss's law for magnetism

Gauss's law for electricty (Coulomb's law)

Ampere's law

Faraday's law

v.g=o (12)

v.b=p_ (13)

VxH=f+ 0/_- (14)
Ot

Vxg= og
at (15)

CONSTITUTIVE EQUATIONS

Assuming an isotropic, homogeneous medium we adopt the constitutive equations

/)=e/_ and /_=#H.

OHM'S LAW

Ohm's law is written in the form

f_ -.

..f= o (_i+ 17x g)- _.(J x .g) (16)

where f is the current density, /_ is the electric field, /_ is the induced magnetic field and a is

the electric conductivity with milts of mho/m and f/is the Hall parameter given by (reference 1)

£l = 9.6(1016)(Ta/2B/Zn logA)

4 4



with Coulomb logarithm given by

logA _ 23 - log(1.22x 103nU2/T312)

with n the plasma number density.

ELECTROMAGNETIC FIELD EQUATIONS

Neglecting the displacement current modifies Ampere's law to

v×g=#Z (17)

Assumming that the charge density is constant implies the equation of continuity of charge

is V. f = 0. (Note that the divergence of equation (17) also gives this result.) From Jackson,

reference 10, along with neglecting the displacement current, it is appropriate to ignor Coulomb's

law as its effects are negligible. We thus obtain the electromagnetic field equations

v×g=j

Vx._- ag
at

(is)

Using equation (17) in Ohm's law we solve for/_ and write

= _v x g- 17x g + _'(v x fi) x g (19)

where/3 = _t/tzBa and a -- 1/ap. We substitute the results from equation (19) into Faraday's

law and write

o.d
-.-_-.-= v x (av x/3)- v x (17x/3) + v x ,8(v x/_) x B (20)

and since/3 is a function of T we find

ag
-Vx(aVx/3)-Vx(17xB)+V/_x(Vx/3) x/3+/3Vx(Vx/3) x/3 (21)

Ot
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SUMMARY OF BASIC EQUATIONS USED FOR MODELING

Continuity

Moment um

Op
o-_+ v(p¢) = o

P-k- + p(p v)_ = _._
i=1

Energy

n

+ p('V. V)(CpT) = V(KTVT ) + _ ¢i
i=1

Electromagnetic field equations

og
Ot

--- = v x (_ x_)- _ x (_x _)+ v x Z(vx _)x

This produces a system of eight simultaneous partial differential equations in the eight

unknowns

Br, BO, Bz , p, Vr, Vo, Vz , T.

Throughout the calculations the following quantities can be generated in terms of the above

variables.

Y=ivx_
#

._= o_,f- ff x g + #B(Zx g)
(22)

SCALAR FORM OF FIELD EQUATIONS

Assuming symmetry with respect to the 0 variable, all derivatives with respect to 0 are

neglected. The following set of scalar equations then results

Continuity

op ia(_py_) o(pyz)
--_-+ + -or Or Oz

6



Momentum

n

or, (v,°v" or, v_ =_(_,),
P---_- + O t --'_'V -l- Vz Cgz r i=1

n

p---_- + p Vp + Vz -]- =i=1

n

P---_--}-P Vr-_r +Vz'-_-z J i=1

Energy

p (gp + Ta_6____ _T agp'_ a_T _-T =
\ ux l

aT \\-bT) + \_--T) ]+KTI_2+-/a---/+-_ 2]

I'i

+ _,_i
i=1
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Electromagnetic field equations

OBr

&

02Bo OB_OBo (02Bo- _ B"-O_z2 + Oz Oz + B" k o-_z

+82_[ z 02 +B,.\ Or +
OB 0 02Bo 02Bo _ OB o

Ot c_ Oz 2 oL 0r 2 r Or

___ OV_ OBo OV,.+ v_ + Bo--_-z + v,--gV + Bo-g_

+5 Bz Oz 2 OrOz + _ Oz

+ B, \ o-7_z o_2 . + _ \ Oz

+ -_z Bz Oz Or - Bo \ Or

OBz 02Br 02Bz _ OBr _ OBz

Ot - _ OrOz -_ + r Oz r Or

V, OBz OV, 1
+ --_-r +Bz-_r +r(VrBz-VzBr)

02BO OBz OB 0 (02Bo+ fl Bzo---_z + Or Oz + Br\ Or 2 +-_

+_ Bz--0T+B" \ 0_ +

OBz OVr

Oz Oz

_+7 o--7- +-g7 \ o, +

02 Br 02 Bz OBr Br OVz
_-gy + _ O-_z + V,-N-z + -_-z - y,

ol OB z OVo

+ -_Bo- Vo_ Bz O---;-
OBr OVo

-- vo O--g--B, O--;-

OBz "_ 2Be OBe

Or )

0_ ]J+

r Oz

O_ [,., OB 0 (OBr OBz_]L_O-_z + B, Oz _ ]

OBr OVz

v_ 0---7-- B, 0--7-

o_ +--g# k-g-, + + r _j

These equations are subject to certain boundary and initial conditions which are now

discussed.

BOUNDARY AND INITIAL CONDITIONS

With reference to the figure 1, the line AF has the input conditions

P = P0 = constant

T = To = constant

V,. = Vo =0

Vz = Vo = constant

OB,. OBo OBz

Oz Oz Oz

8 8



Due to symmetry considerations the line AB has the center line boundary conditions

Op =0
Or

OT
_--'0
Or

01I.
_-=0
Or

01Io 0
Or

OVz
_'--0
Or

OBr
-0

Or

OBo = 0
Or

OBz
-0

Or

The far field conditions along the line BC are given by

°! = o oyz = o
az Oz

aT cOB,.
=0 -0

Oz Oz

OVr OBo
-0 _---0

Oz COz

011"o OBz
-0 -0

Oz Oz

For the insulated boundary segment between ED we assign the boundary conditions

V,. = Vo = Vz = 0 no slip boundary condition

T = To = constant

0-2-0= 0
Or

B,.=Bo=Bz=O

For the uninsulated boundary segments FE and DC we assign the conditions

Vr = VO = Vz = 0 no slip boundary condition

Jo = 0 which implies Oz

O(_Bo)
Or

T = To = constant

0__pp=0
Or

COB,. OBz

- Or and simultaneously

=0 and OB____O0=0
Oz

9



These later boundary conditions upon B insures that the electric field J_ satisfies the condition

/_- i* = 0 everywhere on the nozzle boundary, where t' represents a unit tangent vector to an

arbitrary point on the nozzle boundary.

Initial conditions are assigned in order to avoid large initial transients in the numerical solution

because large changes can lead to numerical instabilities of the system of partial differential

equations. We therefore assign the following initial conditions at all interior grid points.

T = To = constant

Vr = Vo =0

Vz = VO = constant

Br, Be and Bz are assigned values such that V •/3 - 0

everywhere in the solution domain.

TRANSFORMATION OF COORDINATES

We make the change of variables

Z r

x b Y- f(z)

so that the domain of the nozzle 0 < r < f(z), 0 < z _ b transforms to the computation domain

0 < x < 1 and 0 _< y _< 1. The scalar form of the governing equations can then be written in the

following forms.

Continuity

Op i O(pV_) pv_ i o(pyz)
o7 + SS) +yT(;)+i

yf'(z) O(pVz)

f(z) Oy

Momentum Equations

-0

OV_

Ot

Oy_
Ot

Vr OVr (10Vr yf'(z) OVr'_--+ f(z) Oy + Vz b Ox f(z) _,]

Vr OVo (10Ve yft(z) OVo--+ f(z) Oy + Vz b Ox f(z) Oy ] +

Oyz y_

Ot f(z)

n

yf(z) P i=1

12

v vo _ !
yf(z) P i=1

vf'(z)OV_) 1 _:(z) =
i=1

OV_ { 10v_
Oy + V_ _ b Ox

10 10



Electromagnetl c Field EquatiOnS
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ez-component

OBz

Ot

1 02Bz

fX(z) Oy 2

ft(z) OBr 1 02Br yff(z) 02Br- o_ f2(z) Oy + bf(z) OxOy f2(z) Oy2

1 [_0B_ Vf'(z) OB_] 1+ yf(z) Ox f(z) _y J yf2(z)
vz OBr Br OVz V_ OBz

+ +
f(z) Oy f(z) Oy f(z) Oy

{ (-..ft(z)OB°oY bf(z) Oxoyl02B°+ fl ez "f2(z ) +

10Bz (_OB o yf'(z) OBo)+ f(z) ov ox f(z) ov

Oy )
B: Ov,. GB,. V_B:

+_
f(z) Oy yf(z) yf(z)

yf'(z) O2BO_

f(z) ov2 )

Br 02Bo Br OBo 1 0Br (10Bo Be )+ i2(z) Oy2 + y]2(z) oy + f(z) oy f(z) oy + y]-_

+v-]-_ b ox f(,) ov + vf2(,) ov

fl'(T) OT [ (lOBe yf'(z) OBo) ( 1 OBe Be )]+ f(z) Oy Bz b Ox f(z) Oy + Br f_z) Oy + yf(z----)

NUMERICAL SOLUTION

We are primarily interested in the steady state solutions and the time necessary to achieve

steady state. The above system of coupled nonlinear partial differential equations are simplified

by assuming symmetry with respect to the 0 variable. This enables us to set all derivatives

with respect to 0 equal to zero. Additional assumptions regarding magnitudes of force terms and

energy terms can be made by doing a dimensional analysis of the resulting system of equations. A

grid generation technique is used to alter the solution domain to a rectangle. Then the equations

and rectangular boundary can be scaled before any numerical solution techniques are applied.

The system of equations are then solved numerically using ADI (Alternating Direct Implicit)

techniques patterned after the Lax modification.

GRID GENERATION

Let r = f(z) denote the nozzle boundary for 0 < z < b and consider the mapping from

the (r, z) real coordinates to the (x,y) computational coordinates given by the transformation

equations

X -- --

b
r r (23)

y __ __ __

_._ f(z)

13



where rmax = f(z) denotes the nozzle boundary which changes with position.

converts the region

D = { r, z l O < z < b, O < r < rrnax }

This mapping

to the region D' of computational coordinates given by

D'={x, ylO<x<l , 0<y<l}.

To handle large gradients in any of the independent variables, the computational x, y domain is

partitioned into 6 regions as illustrated in the figure 2.

o /.o

Figure 2. Computational coordinates

The 6 regions are characterized by the selection of the Ax and Ay step sizes. In this way finer

grids can be specified near the boundaries and nozzle regions where large gradients can occur.

Observe that any partial differential equation of the form

. 02u .02u Ou Ou
O--U-uOt= Dl(r'z)_ _-2+ D2(r'z) o--_zz + D3(r'z)--_z2 + D4(r'z)-Orrr + D5(r'z)-_z + D6 (24)

14
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where u = u(r, z, t) and D6 = D6(r, z,t, u,...) can be converted to computational coordinates

x, y by using the chain rule for partial derivatives. These changes can be represented

Ou Ou Oz Ou Oy

Or Ox. Or Oy Or

Ou Ou Ox Ou Oy

Oz Ox Oz Oy Oz

and
02 u Ou 02z Oz

Or---'_ -- COx cot 2 + -_r

COu CO2y COy

+ COyCOt2 + "_r

02 u COu02 x COx

COz---y = COxOz 2 + -_z

COu CO2y COy

+ CO_COz---_+
CO2u COu CO2z

COrCOz COzCOrCOz

CO2u COx CO2u Oy'

COx2 COr+ COzCOyOr

CO2u COx CO2u COy

COyCOx Or + COy2 COt

"CO2u COx CO2u COy

Ox 2 COz COzCOyCOz

CO2u cox 02u COy
COyCOxCOz -4- COy2 CO'--'z

az [co2ucox a2u ay ]
+ _ Lcox2 coz+ coxcoy J

CO2u COY]+ COyCOrCOz -_r [COyCOzCOz + COy2

Then the partial differential equation (24) can then be written in the x, y computational

coordinates

or

COu -* CO2u * CO2u D* c32u , COu COu
_-=DI_x2 +D20-_y+ 3-_y2 + D4"_x + D_-_y + D;

(25)
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where

D_ = D_(x,y)= Dl(xr) 2 + D2xrXz + D3(xz) 2

D_ = D_(x,y) = 2Dlxryr + D2(xryz + yrxz) + 2D3xzyz

D; = Dl(Yr) 2 + D2YrYz + D3y2z

D_ = D_(x,y) = DlXrr + D2xrz + D3xzz + D4xr + D5xz

D_ = D_(x, y) = DlYrr + D2Yrz + D3yzz + D4yr + D5yz

D_ = D_(x,y)= D6(yf(x),x,t,u,...)

and Di = Di(r,z) = Di(yf(x),x) for i= 1,...,5 and

1

xr-0, yr-1/f(z), Xz--_, yz=-yf'(z)/f(z)

(f"(z)
zr_ = _= = _zz = w_ = o, w= = -f'(z)/(f(z)) 2, v,== -v _, f(z)

Then the above coefficients reduce to

D;(x,y) =

D2

D_(x,y)- bf(z)

D1

D_(x,y)- (f(z)) 2

D_(x,y) = 95
b

D_(x,y) = -D2--

S'(z) y2 (s'(z)
y-2 (f-_2 + D3 \ f(z) )

f'(z) ( f"(z) ( ft(z) _ 2_ D4 yD5f'(z)
(f(z)) 2 yD3 _ _ 2 t,,_] # / + S(z-_-)- f(z)

D_(x,y) = D6(yf(z),x,t,u,...)

where

Di = Di(r,z)= Di(yf(z),x), for i= 1,2,3,4,5.

ADI NUMERICAL METHOD

The following description of the ADI numerical method is for uniform Ax and Ay grids and

of course has to be modified for unequal x and y spacing. In step 1 of the ADI numerical method

the interior points to the region D I of the computational domain are labeled from left to right as

illustrated in the figure 3. Assume that the system of partial differential equations to be solved

16 16



have all beennormalized. Partition the segmentfrom x = 0 to x - 1 into segments with spacing

Ax = 1/m2 so that the ith node is iAx and the right boundary is m2Ax, with 0 _ i _ m2.

Similarly, partition the segment from y = 0 to y = 1 into segments with spacing Ay = 1/ml so

that the jth node is jay and the top boundary is relay with 0 < j _< ml, where i,j, ml and

m2 axe integers. The interior points to this grid are then labeled as illustrated in the figure 3.

Let un be associated with the (i,j)th node point, where

n = (m2 - 1)(ml - 1 - j) + i ml and m2 are fixed.

Conversely, given the Un point, we can determine its position i, j from the relations

j -- ml - 1 - Int[(n - 1)/(m 2 - 1)]

i = n - (m2 - 1)(rnl - 1 - j)

where Int[x] is the integer part of x.

Ul u2 u3 u4

Um2 um2+l Um2+2 Um2+3

• • • ,

• • • Urn2-1

• • • U2rn_ --2

Un

• "" u(m2_1)(ml_1)

-(_. 9--

m

Figure 3. Step 1 labeling of interior points to domain D

17



Letting

u(iAz,jAU, nat) = u-"-
I,J

and dropping the star notation, we then replace all partial differential equations of the form of

equation (31) by difference equations having the form

u n+l - u.'3.
l_J l,J

At

/ n+l _ 2un+l un+l \

=D1 lUi+l,j (Ax)2i'j "+- i-l,j)

( u n -- un _ u n )
+ D2 i+l,j+l i+l,j-1 i-l,j+l nt" Ui-l,J -1

4AxAy

"t- D3 i,j+l - i,j-1 [Ui+l,j___ i-l,j
(Ay)2 + D4 \ 2Ax

+ D5 k, 2Ay + D6

which can be rearranged to the form

= 1 (Ay) 2 / 'J + (Ay) 2 q- 2Ay / i,j+l h- \_

D1 At _ un+ l
(Az)2 ] i-l,j

D5At "_ un. .
// 2,3-1

U n _ U nD2At ( i+l,j+l un i-l,j-1) + DOAt+ 4AxAy - i+l,j-1 Un-l,j+l nt-

Evaluating this equation at each of the interior node points gives rise to a system of

(m2 - 1)(ml - 1) implicit linear equations which are then solved by row reduction methods.

The second step of the ADI method relabels the interior points of the computational domain

from top to bottom as illustrated in the figure 4.

For this labeling we can let Un denote the point associated with the (i,j)th node where

n = (ml - 1)(i- 1)+ -j.

Conversely, given Un we can solve for i and j from the relations

i= 1 + Int[(n- 1)/(ml- 1)]

j=(ml-1)(i-1)+ml-n

18
18



Ul Ural .........

u2 Um_ + l .........

u3 Urea+2 .........

".. : :
U4 Uml+3

:
...... Un

Urn1 -1 U2m1-2 .........

m
m
m

-4i. j}

m

Figure 4. Step 2 labeling of interior points to domain D'

For step 2, all the partial differential equations of the form of equation (31) are replaced by the

difference equations having the form

ttn+l -- un" "i,jz,a = D1 (un+l'j - 2u_'j + un-l'j)

n _ u n
q_ D2 Ui+l,j+l - un+l,j-1 i-l,j+l q- Ui-l,j-1

)4AxAy

n+l -- 2u 'n.+l -t- ui,j_ 1 n n
+ D3 ui'j+l t,a

-(_y)2 + 94 \ 2Ax

n+l n+l )

Ui,j+ 1 -- ui,j_ 1

+ D5 -2Xy + D6

19



which canbe rearranged to the form

1+ T£-_] i,j \(-h-_u)2 + 2a---T -i,_+1+ \ 2a_ (ay)2/ _-1

D2At (uin+l,j+l uni-I-1j-1 Un+ 4AxAy - - i-l,j+l + u,-1,j-1/ + De At

Applying this difference equation to each interior node point results in an implicit system of

(ml - 1)(m2 - 1) simultaneous linear equations which must be solved for the values of u at the

node points.

One can see that the finer the interior grid there results a larger system of linear equations

to be solved. Also the results from the ADI numerical method are more accurate on the even

numbered time steps. Additional complications results when employing the unequal step size

approximations illustrated in the figure 5. The unequal step sizes are necessary to handle large

gradients occurring in any of the dependent variables. The computational region is therefore

divided into 6 regions as illustrated in the figure 5. The density of node points can be changed

in each region by selecting different step sizes in the computational coordinates.

1

4

2

5

3

6

Figure 5. Unequal x and y spacing.
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In the case of unequal grid spacing we employ the difference approximations.

0_ _ hxl + z_x2 (u(x

Ou 1 [ Ay2 , ,

02u 2 [u(x + Axl,y)-- u(x,y)

Ox-_ "_ Axl + Ax2 [ Axl

02u 2 [u(z,y + Ayl)-- u(x,y)

LOy 2 Ayl + Ay2 Ayl

02u u(x + Axl,y + Ayl) -- u(x + Axl,y-- Ay2)

OxOy (Axl + Ax2)(Ayl + Ay2)

u(x -- Ax2, y -- Ay2) - u(x -- Ax2,y + Ayl)
+

(Axl + Ax2)(Ayl + Ay2)

AXl / / ]+ a_l, v)- u(_, y))- X_2_u_x- ax2, v)- u(_, v))
d

AVl(u(_, ]V+ a_l) - _(_,y))- _ V- aV2)- _(_, y))

_(_ - Ax2,V)- _(_, v))
+

Ax2

u(x,y -- ay2) -- u(x, y))
+

Ay2

SPECIAL CASE-ELECTRIC FIELD IN VACUUM

In a vacuum we solve
02 ¢ 1 0¢ 02 ¢

v2¢ - _ + T_ + b_z2= 0

over the domain 0 _< r < f(z) and 0 < z < 1. Using the transformation equations

(26)

z=x r=yf(z)

where

f(z) = .2 + x tan(Sir/IS0)

is used to describe a straight line nozzle boundary. The equation (26) then transforms to

02¢ ,02¢ ,02¢ 0¢
0_2 + 4_' v_0--V_y+ b(x'v_b-_2+ 4_'_) N = 0

over the domain 0 _< x _< 1,0 < y < 1 where

_2yf'(z)
a(x,y) = f(z)

1 2
b(x,y) = f2-(z ) + k, -f-(_]

1 (f"(z)
_(x,v)- vf2(z) v \ f(z)

(27)
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Using the notation ui, j = u(iAx,jAy) and the difference approximations

Uxx

Uyy

Uy

Ui+l,j -- 2ui,j + Ui-l,j

h 2

Ui+l,j+l - Ui+l,j-1 - Ui-l,j+l + Ui-l,j-1

4h 2

ui,j+ 1 -- 2ui, j + ui,j-1

2h

and defining

d(x,y) = _2(1 + b(x,y))

the equation (26) reduces to the difference equation

ui'j = _ijl f Ui+l,j h2+ Ui-l,j + _aij (Ui+l,j+ 1 _ Ui+l,j-1 -- Ui-l,j+l + Ui-l,j-1)

bij cij
(Ui+l Ui-l,j) }h"-_ (ui,j+l + ui,j-1) + _ 'J -

This difference equation is subject to the boundary conditions

Ui,jmaz = assigned potential value

uo, j = u2, j

Uimax,j = Uimaz-2,j

ui, 0 = ui, 2

which represent zero derivative boundary conditions along the other three sides. The figures 6,7,8

and 9 illustrate the potential function for two different nozzle configurations where the cathode

is assigned a value of -500 volts and the anode(s) is assigned a value of +500 volts.

FLOW AND HEAT TRANSFER THROUGH A POROUS MEDIA

In the figure 10 a porous material is heated with 40kw of power from a solar simulator. We

assume that the solid porous material is heated to a uniform temperature Ts and that a gas flows

through the porous material and is heated.
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Figure 10. Heat transfer through porous material.

27



In the following discussions we use the notations:

¢=porosity 0<¢<1

Tg, Ts = Temperature of gas and solid (g)

pg, ps = Density of gas and solid (gm/cm 3)

Kg_ Ks =

Ke =

tt_

O_g

L=

Thermal conductivity of gas and solid (cal/scm 2 K/cm)

(1 - ¢)gs + CKg = Effective thermal conductivity

Velocity of gas (cm/sec)

Kg/Cpgpg = Thermal diffusivity of gas (cm2/sec)

Thickness of porous material (cm)

(dimensionless)

Radius of disk (cm)

Heat transfer coefficient (cal/s cm 2 K)

Input power (Kw)

Surface area of disk (cm 2)

Specific heat of gas and solid (cal/gmK)

Ratio of surface area to volume of porous media

Dimensionless temperature ratio

Dimensionless temperature ratio

uL
Pe = -- = Peclet number

O_g

h=

Q0 =

A=

Cpg, Cps =

Rs --

U= Ts/Tgo =

Y = Tg/Tgo =

tu
r = -- = Dimensionless time

L

X x= - = Dimensionless distance
L

(cm2/cm a)

Following reference 1, the basic equations describing the heat transfer to a gas moving through

a porous media are given by

( OTg OTg O2T,
pgcp_ \ Wi- + U-gT ] = _'9

hR(Tg - Ts) (28)

O=Ts
OTs _ Ks hR(Ts - Tg) (29)p_Cp_ & Oz2

for0<x <L andt >0.
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and

The equations (1) and (2) are subject to the boundary conditions

gs OTs 239Q0 ea( T 4 4
-ffz'z ]z=O - -A - T;O) - pgCpgu(Ts - Tgo )

aT, = h(T, - T_ )-Ks

where all terms have been scaled to the units of cal/s cm 2 and

(30)

(31)

a = 5.67(10-12)(.239) cal/s cm 2 K 4

is the Stephan-Boltzman constant, e is the emissivity.

conditions

aTg = hR(T_ - T_)pgCpg_ -_ z=o
aT, aTg
ozl.=L=0 and I =L

We further assume that the initial conditions are

In addition we have the boundary

=0

(32)

(33)

Ts=Tg=Tgo. (34)

Introducing the dimensionless variables U, V, X, r, the above equations can be written

OU / 1 02U

a--_ = Ao _ r_ OR 2

avov (_a2v0----_+ a--Z = A1 OR 2

OU

 lR=,

10U

+ r_R OR

+

-hr

= -kT(u- 10

10V

r20R OR

1 02U_
+ L2 _] - Bo(V - V)

1 02V)+ L2OZ 2 -BI(V-U)

where
L 2 hRsL 2 KsL 2 hRsL 2

A1 -- p--_ B1 - PeKg Ao = agpsCpsPe Bo = agpsCpsPe

The equations (35) and (36) axe subject to the boundary conditions

OU
= A3 - B3(U 4 - V 4) - C3(U - V)

OZ z=o

OV

D-Z']Z=O = B4(U --V)

OU OV

oz Iz=,=o, =o

(35)

(36)

(37)

(38)

(39)

(40)
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where

eaT_oL KoPe hRsL 2
A3-- 239 .roR/LO( ) , B3 = --, C3-- _, B4 = (41)

AKeTgo Ke Ke ag Pe pgCpg

The initial conditions are

U(O,t)- 1 and V(O,t)= 1 (42)

We divide the intervals 0 _< Z < 1 and 0 < R < 1 into N parts with step sizes

AZ = AR = 1IN. We desire to represent the temperature of the gas and solid at the positions

R = iAR and Z - jZXZ for the time r = nat which is based upon the given temperatures

at time r. Let U(iAR, jAZ, nAT)= U .n. and V(iAR, jAZ, nAr)= V..n. and use difference
2,? t,3

approximations to write the above equations as difference equations. We use the ADI (Alternating

Direction Implicit) method to solve the above system of coupled partial differential equations.

Material Properties

From reference 15, we obtained the following empirical data for Hafnium carbide.

Temperature Thermal Conductivity of Hfc

deg K W/cm K

560

800

II00

2000

2500

3000

0.09

0.12

0.13

0.15

0.25

0.29

The best fit second degree polynomial to the above data is given by

Ks(T) -- .0361887 + 1.03093(10 -4) T - 1.2077(10 -8) T 2

26
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Temperature
deg K

60

95

300

600

1000

3000

Specific Heat of Hfc

cal/g K

0.011

0.020

0.045

0.065

0.065

0.065

Table lookup will be used to fit the Specific Heat data.

Temperature Emittance

deg K

300

1100

1900

2500

2900

1.00

0.98

0.90

0.70

0.62

The above data is represented by the approximating function

e(T) = .8- .2 tanh((T- 2100)/1000).

We use the above data to construct empirical relations to represent the constants in the above

system of coupled partial differential equations.The Appendix A contains graphical output from

the computer analysis of the heat transfer in a porous media.
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APPENDIX A

GRAPHICAL REPRESENTATION OF RESULTS

Solution of the coupled equations describing flow of gas through a porous media. The

input power in Kw is assumed to be a cosine curve of the form

7rR

Q(R) = 40. cos(-_-).

Solution of coupled equations is by ADI (Alternating Direction Implicit) technique.

All dimensions have been normalized. The radial and axial directions range from 0 to 1.

The temperatures of the gas (V) and solid (U) have been normalized by the equations

U = TS/TGO V = TG/TGO

where TGO = 300 K.

The figures A1 throug A16 illustrate the temperature change for the gas and solid as

a function of the normalized time

_U

L

where t is real time, u is velocity, and L is length in the axial direction.
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Figure A1. Normalized Gas Temperature at T = 1.0
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Figure A2. Normalized Gas Temperature at T = 2.0
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Figure A3. Normalized Gas Temperature at T = 3.0
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Figure A4. Normalized Gas Temperature at r = 4.0
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Figure A5. Normalized Gas Temperature at T = 5.0
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Figure A6. Normalized Gas Temperature at r = 10.0
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Figure AT. Normalized Gas Temperature at T = 20.0
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Figure A8. Normalized Gas Temperature at T = 30.0
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Figure A9. Normalized Solid Temperature at T = 1.0

43



q

/U

Figure A10. Normalized Solid Temperature at r = 2.0
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Figure All. Normalized Solid Temperature at r = 3.0
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Figure A12. Normalized Solid Temperature at T = 4.0
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Figure A13. Normalized Solid Temperature at T = 5.0
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Figure A14. Normalized Solid Temperature at r = 10.0
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Figure A15. Normalized Solid Temperature at _" = 20.0
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Figure A16. Normalized Solid Temperature at T = 30.0
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